Xenon was discovered in England by William Ramsay and Morris Travers on July 12, 1898, shortly after their discovery of the elements krypton and neon. They found it in the residue left over from evaporating components of liquid air. Ramsay suggested the name xenon for this gas from the Greek word ξένον [xenon], neuter singular form of ξένος [xenos], meaning 'foreign(er)', 'strange(r)', or 'guest'. In 1902, Ramsay estimated the proportion of xenon in the Earth's atmosphere as one part in 20 million.

Xenon flash

During the 1930s, engineer Harold Edgerton began exploring strobe light technology for high speed photography. This led him to the invention of the xenon flash lamp, in which light is generated by sending a brief electrical current through a tube filled with xenon gas. In 1934, Edgerton was able to generate flashes as brief as one microsecond with this method.

In 1939 Albert R. Behnke Jr. began exploring the causes of "drunkenness" in deep-sea divers. He tested the effects of varying the breathing mixtures on his subjects, and discovered that this caused the divers to perceive a change in depth. From his results, he deduced that xenon gas could serve as an anesthetic. Although Lazharev, in Russia, apparently studied xenon anesthesia in 1941, the first published report confirming xenon anesthesia was in 1946 by J. H. Lawrence, who experimented on mice. Xenon was first used as a surgical anesthetic in 1951 by Stuart C. Cullen, who successfully operated on two patients.

In 1960 physicist John H. Reynolds discovered that certain meteorites contained an isotopic anomaly in the form of an overabundance of xenon-129. He inferred that this was a decay product of radioactive iodine-129. This isotope is produced slowly by cosmic ray spallation and nuclear fission, but is produced in quantity only in supernova explosions. As the half-life of 129I is comparatively short on a cosmological time scale, only 16 million years, this demonstrated that only a short time had passed between the supernova and the time the meteorites had solidified and trapped the 129I. These two events (supernova and solidification of gas cloud) were inferred to have happened during the early history of the Solar System, as the 129I isotope was likely generated before the Solar System was formed, but not long before, and seeded the solar gas cloud with isotopes from a second source. This supernova source may also have caused collapse of the solar gas cloud.

Xenon and the other noble gases were for a long time considered to be completely chemically inert and not able to form compounds. However, while teaching at the University of British Columbia, Neil Bartlett discovered that the gas platinum hexafluoride (PtF6) was a powerful oxidizing agent that could oxidize oxygen gas (O2) to form dioxygenyl hexafluoroplatinate (O2+[PtF6]−). Since O2 and xenon have almost the same first ionization potential, Bartlett realized that platinum hexafluoride might also be able to oxidize xenon. On March 23, 1962, he mixed the two gases and produced the first known compound of a noble gas, xenon hexafluoroplatinate. Bartlett thought its composition to be Xe+[PtF6]−, although later work has revealed that it was probably a mixture of various xenon-containing salts.Since then, many other xenon compounds have been discovered, and some compounds of the noble gases argon, krypton, and radon have been identified, including argon fluorohydride (HArF), krypton difluoride (KrF2), and radon fluoride.


Xenon is a trace gas in Earth's atmosphere, occurring at 0.087±0.001 parts per million (μL/L), or approximately 1 part per 11.5 million, and is also found in gases emitted from some mineral springs. Some radioactive species of xenon, for example, 133Xe and 135Xe, are produced by neutron irradiation of fissionable material within nuclear reactors.

Xenon is obtained commercially as a byproduct of the separation of air into oxygen and nitrogen. After this separation, generally performed by fractional distillation in a double-column plant, the liquid oxygen produced will contain small quantities of krypton and xenon. By additional fractional distillation steps, the liquid oxygen may be enriched to contain 0.1–0.2% of a krypton/xenon mixture, which is extracted either via adsorption onto silica gel or by distillation. Finally, the krypton/xenon mixture may be separated into krypton and xenon via distillation. Extraction of a liter of xenon from the atmosphere requires 220 watt-hours of energy. Worldwide production of xenon in 1998 was estimated at 5,000–7,000 m3. Due to its low abundance, xenon is much more expensive than the lighter noble gases

Xenon is relatively rare in the Sun's atmosphere, on Earth, and in asteroids and comets. The atmosphere of Mars shows a xenon abundance similar to that of Earth: 0.08 parts per million, however Mars shows a higher proportion of 129Xe than the Earth or the Sun. As this isotope is generated by radioactive decay, the result may indicate that Mars lost most of its primordial atmosphere, possibly within the first 100 million years after the planet was formed. By contrast, the planet Jupiter has an unusually high abundance of xenon in its atmosphere; about 2.6 times as much as the Sun. This high abundance remains unexplained and may have been caused by an early and rapid buildup of planetesimals—small, sub planetary bodies—before the presolar disk began to heat up. (Otherwise, xenon would not have been trapped in the planetesimal ices.) Within the Solar System, the nucleon fraction for all isotopes of xenon is 1.56 × 10-8, or one part in 64 million of the total mass. The problem of the low terrestrial xenon may potentially be explained by covalent bonding of xenon to oxygen within quartz, hence reducing the outgassing of xenon into the atmosphere.

Unlike the lower mass noble gases, the normal stellar nucleosynthesis process inside a star does not form xenon. Elements more massive than iron-56 have a net energy cost to produce through fusion, so there is no energy gain for a star to create xenon. Instead, many isotopes of xenon are formed during supernova explosions.


An atom of xenon is defined as having a nucleus with 54 protons. At standard temperature and pressure, pure xenon gas has a density of 5.761 kg/m3, about 4.5 times the surface density of the Earth's atmosphere, 1.217 kg/m3. As a liquid, xenon has a density of up to 3.100 g/mL, with the density maximum occurring at the triple point. Under the same conditions, the density of solid xenon, 3.640 g/cm3, is larger than the average density of granite, 2.75 g/cm3. Using gigapascals of pressure, xenon has been forced into a metallic phase.


Xenon in shaped Geissler tubes

Xenon is a member of the zero-valence elements that are called noble or inert gases. It is inert to most common chemical reactions (such as combustion, for example) because the outer valence shell contains eight electrons. This produces a stable, minimum energy configuration in which the outer electrons are tightly bound. However, xenon can be oxidized by powerful oxidizing agents, and many xenon compounds have been synthesized.

In a gas-filled tube, xenon emits a blue or lavenderish glow when the gas is excited by electrical discharge. Xenon emits a band of emission lines that span the visual spectrum, but the most intense lines occur in the region of blue light, which produces the coloration.
Isotopes of xenon

Naturally occurring xenon is made of nine stable isotopes, the most of any element with the exception of tin, which has ten. Xenon and tin are the only elements to have more than seven stable isotopes. The isotopes 124Xe, 134Xe and 136Xe are predicted to undergo double beta decay, but this has never been observed so they are considered to be stable. Besides these stable forms, there are over 40 unstable isotopes that have been studied. 129Xe is produced by beta decay of 129I, which has a half-life of 16 million years, while 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, and therefore used as indicators of nuclear explosions. The various isotopes of xenon are produced from supernova explosions, red giant stars that have exhausted the hydrogen at their cores and entered the asymptotic giant branch, classical novae explosions and the radioactive decay of elements such as iodine, uranium and plutonium.

The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.6×106 barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Fortunately the designers had made provisions in the design to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel). 135Xe reactor poisoning played a major role in the Chernobyl disaster.

Under adverse conditions, relatively high concentrations of radioactive xenon isotopes may be found emanating from nuclear reactors due to the release of fission products from cracked fuel rods, or fissioning of uranium in cooling water.

Because xenon is a tracer for two parent isotopes, xenon isotope ratios in meteorites are a powerful tool for studying the formation of the solar system. The iodine-xenon method of dating gives the time elapsed between nucleosynthesis and the condensation of a solid object from the solar nebula. Xenon isotopic ratios such as 129Xe/130Xe and 136Xe/130Xe are also a powerful tool for understanding terrestrial differentiation and early outgassing. Excess 129Xe found in carbon dioxide well gases from New Mexico was believed to be from the decay of mantle-derived gases soon after Earth's formation.

Xenon compounds
Xenon tetrafluoride

Xenon hexafluoroplatinate was the first chemical compound of xenon, synthesized in 1962.Following this, many additional compounds of xenon have been discovered. These include xenon difluoride (XeF2), xenon tetrafluoride (XeF4), xenon hexafluoride (XeF6), xenon tetroxide (XeO4), and sodium perxenate (Na4XeO6). A highly explosive compound, xenon trioxide (XeO3), has also been made. Most of the more than 80 xenon compounds found to date contain electronegative fluorine or oxygen. When other atoms are bound (such as hydrogen or carbon), they are often part of a molecule containing fluorine or oxygen. Some compounds of xenon are colored but most are colorless.

In 1995, a group of scientists at the University of Helsinki in Finland (M. Räsänen and co-workers) announced the preparation of xenon dihydride (HXeH), and later xenon hydride-hydroxide (HXeOH), hydroxenoacetylene (HXeCCH), and other Xe-containing molecules. Additionally, in 2008 Khriachtchev et al. reported the preparation of HXeOXeH by the photolysis of water within a cryogenic xenon matrix.[72] Deuterated molecules, HXeOD and DXeOH, have also been produced.

As well as compounds where xenon forms a chemical bond, xenon can form clathrates—substances where xenon atoms are trapped by the crystalline lattice of another compound. An example is xenon hydrate (Xe·5.75 H2O), where xenon atoms occupy vacancies in a lattice of water molecules. The deuterated version of this hydrate has also been produced. Such clathrate hydrates can occur naturally under conditions of high pressure, such as in Lake Vostok underneath the Antarctic ice sheet. Clathrate formation can be used to fractionally distill xenon, argon and krypton. Xenon can also form endohedral fullerene compounds, where a xenon atom is trapped inside a fullerene molecule. The xenon atom trapped in the fullerene can be monitored via 129Xe nuclear magnetic resonance spectroscopy. Using this technique, chemical reactions on the fullerene molecule can be analyzed, due to the sensitivity of the chemical shift of the xenon atom to its environment. However, the xenon atom also has an electronic influence on the reactivity of the fullerene.

While xenon atoms are at their ground energy state, they repel each other and will not form a bond. When xenon atoms becomes energized, however, they can form an excited dimer (excimer) until the electrons return to the ground state. This entity is formed because the xenon atom tends to fill its outermost electronic shell, and can briefly do this by adding an electron from a neighboring xenon atom. The typical lifetime of a xenon excimer is 1–5 ns, and the decay releases photons with wavelengths of about 150 and 173 nm.Xenon can also form dimers with other elements, such as the halogens bromine, chlorine and fluori.

Akela-p Medical Gases P. Ltd